Chaotic dynamics in a discrete-time predator-prey food chain
نویسنده
چکیده
In this paper, we consider a classical discrete-time food chain model describing predators-prey interaction. The Holling type I functional response is used as the uptake for both predators. The existence and local stability of fixed points of the discrete dynamical system are analyzed algebraically. Using growth rate of prey as the bifurcation parameter, it is shown that the system undergoes a flip and Hopf bifurcations around planer or interior fixed point. It has been found that the dynamical behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulations not only illustrate the key points of analytical findings but also exhibit complex dynamical behaviors of the model, such as the phase portraits, cascade of period-doubling bifurcation and determine the effects of operating parameters of the model on its dynamics. The Lyapunov exponents are numerically computed to characterize the asymptotic stability of the system dynamic response and estimate the amount of chaos in the system.
منابع مشابه
Prey Preference by a Top Predator and the Stability of Linked Food Chains
Recent theoretical studies have shown the potential for chaotic dynamics in simple three-species food chains. Most of these studies have focused on linear food chains, although natural food chains are seldom isolated from the surrounding food web. There is a growing awareness that food web dynamics can be strongly influenced by the behavior and movement of predators, energy, and nutrients acros...
متن کاملAn Analysis on The Lotka-Volterra Food Chain Model: Stability
The food chain refers to a natural system by which energy is transmitted from one organism to another. In fact, a food chain consists of producers, consumers and decomposition. Presence of complex food web increase the stability of the ecosystem. Classical food chain theory arises from Lotka-Volterra model. In the present paper, the dynamics behavior of three level food chain is studied. A syst...
متن کاملPrey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملFood chain chaos with canard explosion.
The "tea-cup" attractor of a classical prey-predator-superpredator food chain model is studied analytically. Under the assumption that each species has its own time scale, ranging from fast for the prey to intermediate for the predator and to slow for the superpredator, the model is transformed into a singular perturbed system. It is demonstrated that the singular limit of the attractor contain...
متن کاملDYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS
The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015